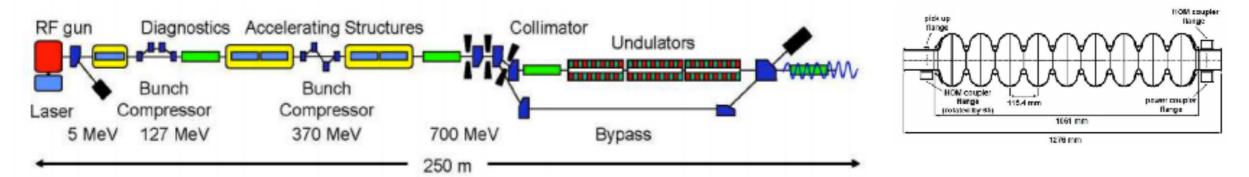
Iterative learning control

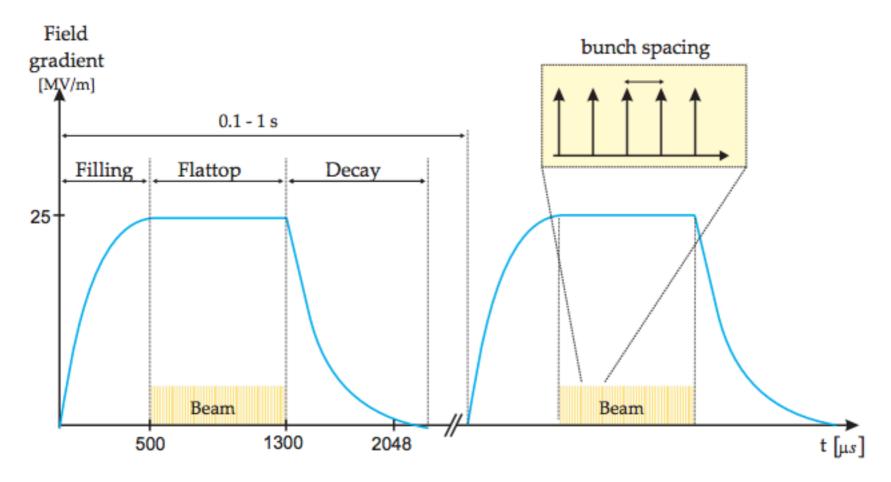
(Study of work by Christian Schmidt and others)

M.Musienko, USPAS 2017

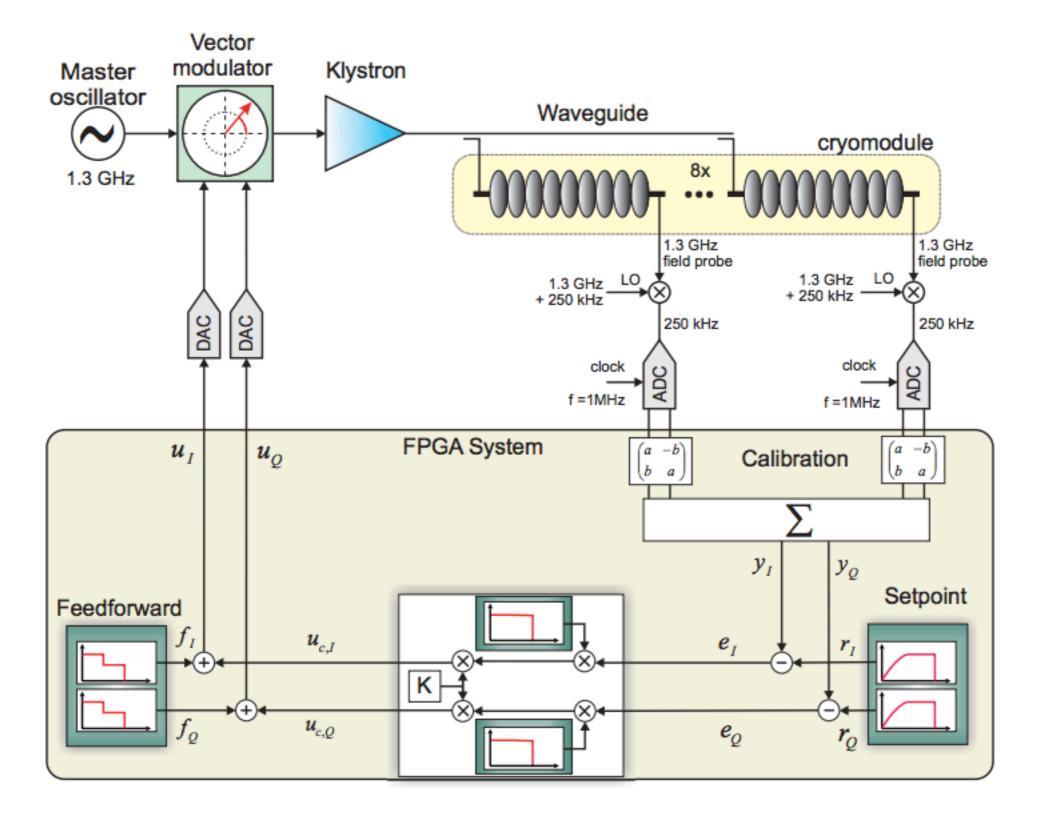
Free Electron Laser in Hamburg (FLASH) at DESY



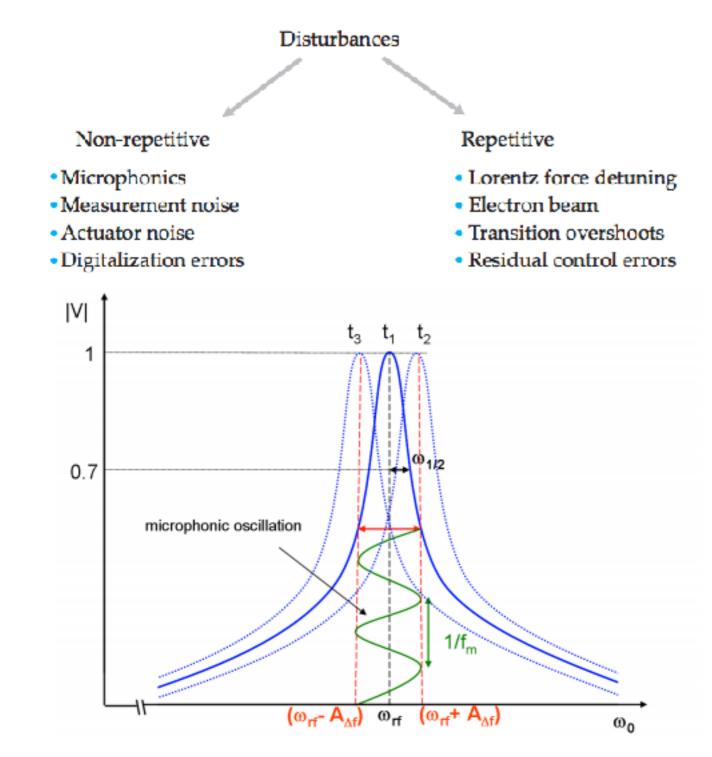
pulsed RF Operation due to the thermal losses



FLASH LLRF



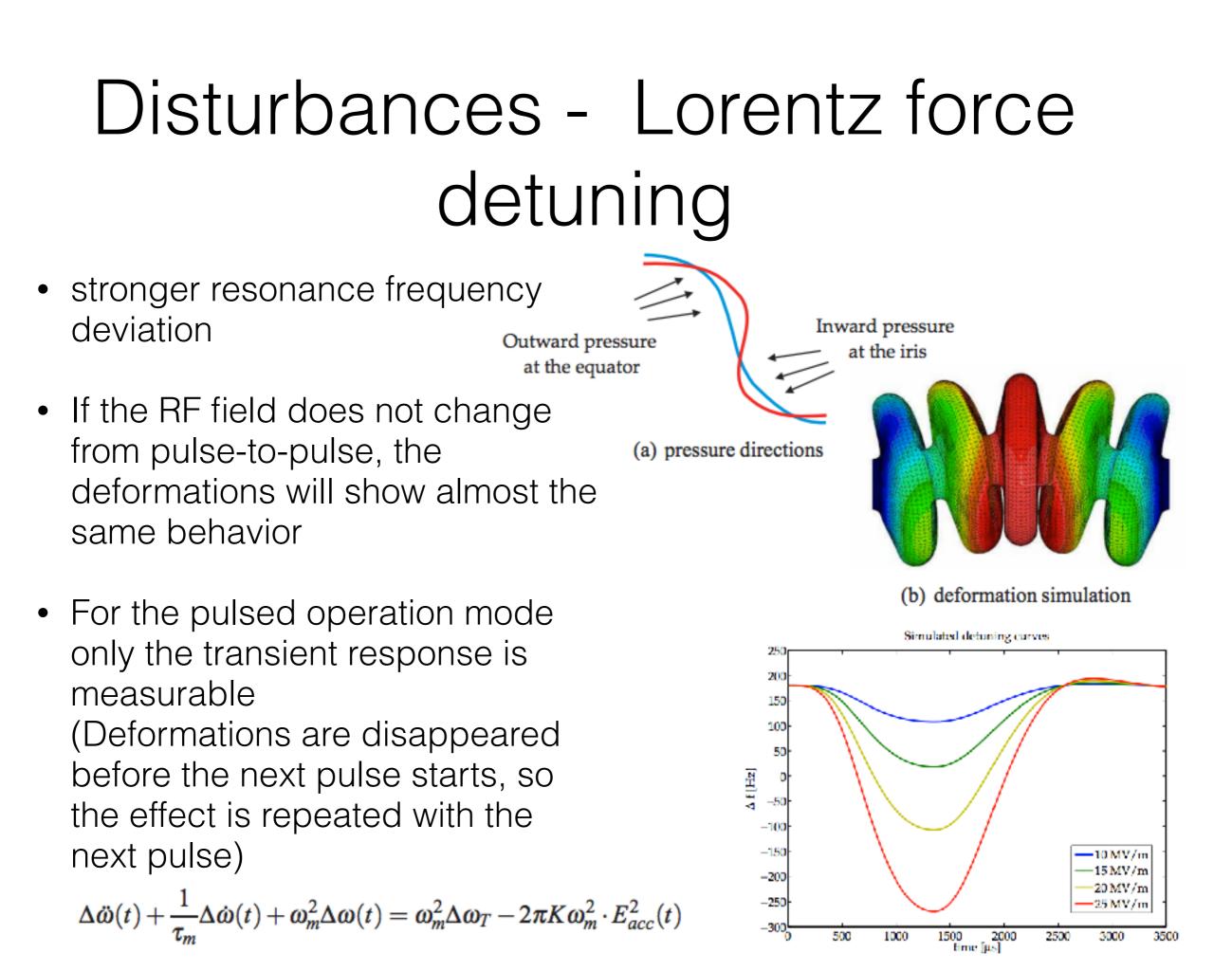
Disturbances - microphonic



 typically in a range up to a few hundred hertz, which in pulsed operation appears as fluctuations from pulse-topulse.

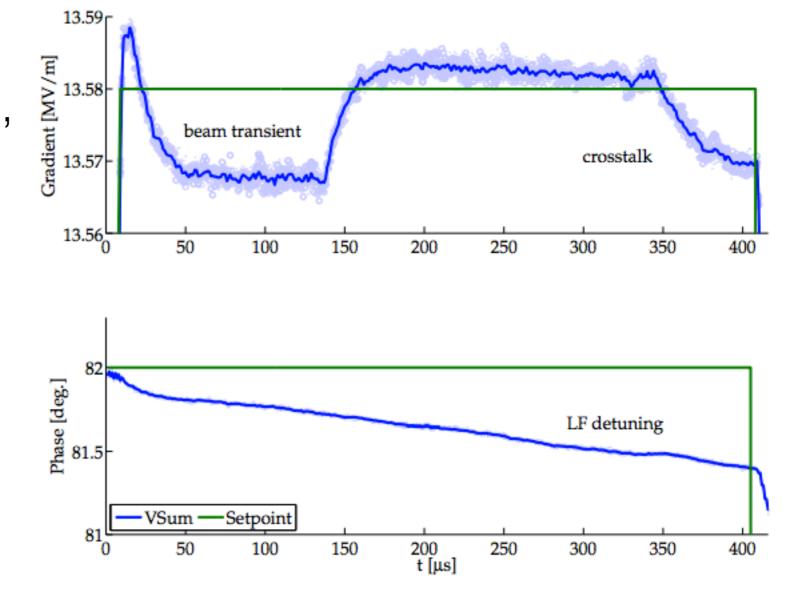
The amplitude or resonance frequency change for FLASH type of cavities is typically $\sigma A\Delta f \approx 6 Hz$

 Can use (mechanical) feedback loop to compensate



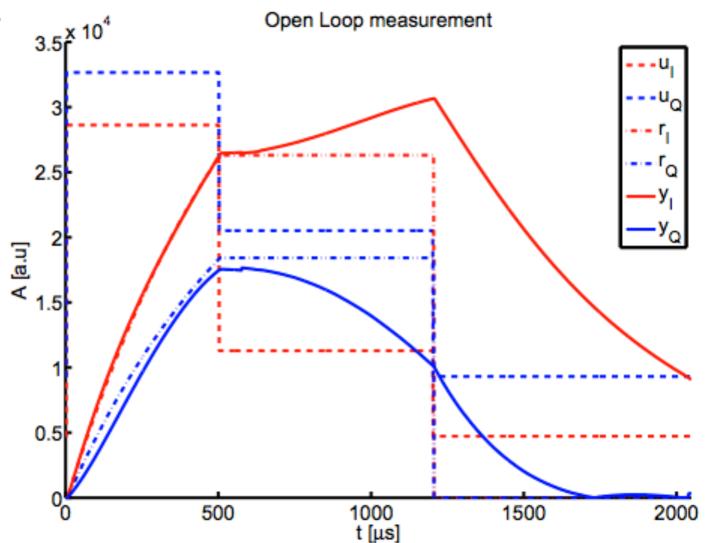
Disturbances - beam loading

- repetitive disturbance source, therefore predictable (if operation state remains)
- Shown with proportional feedback loop closed



RF open-loop response and feedback control

- Proportional gain controller has limit gain due to measurement noise and HOM (8/9 pi mode)
- Phase lag due to digitalization
- Tradeoff between in-pulse and pulse-to-pulse errors
- Out of scope designing a MIMO feedback controller via generalized plant and weighting filter with HIFOO see [1]

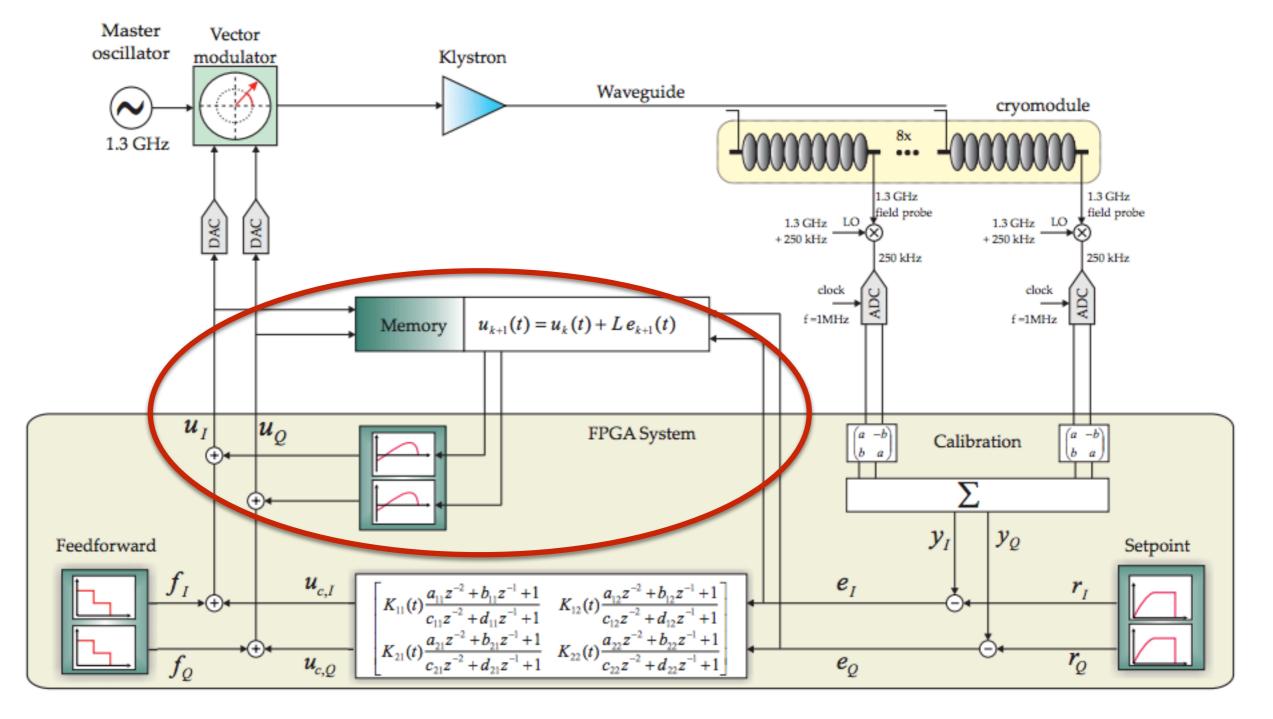


Feedforward control

- Residual field errors due to the low BW of the feedback loop and limitations on the gain
- Predictable disturbance can compensate with RF modulation
- How to calculate? Constant during operation? Optimal?

Iterative learning control - take information from previous trials to optimize the control inputs on the next trial

FLASH LLRF - NOILC Feed forward



Norm-optimal iterative learning control

• General iterative control - $u_{k+1}(t) = Q(u_k(t) + Le_k(t))$ to ensure some error metric $||e_k|| \to 0$ as $k \to \infty, k \in \mathbb{N}$

• Given a system
$$\begin{array}{rcl} x(t+1) &=& A \, x(t) + B \, u(t) \ ; \\ y(t) &=& C \, x(t) \end{array}$$

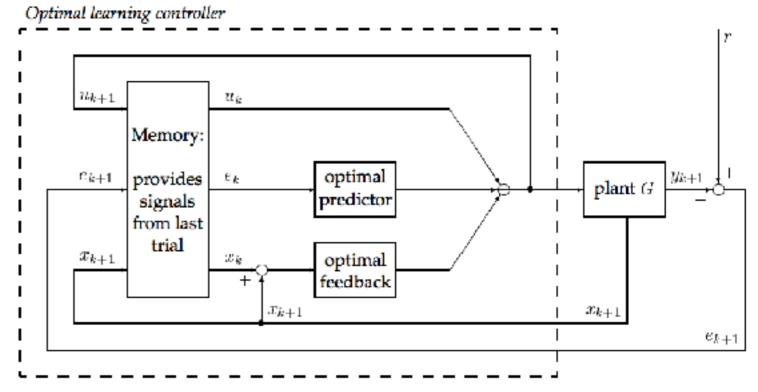
• NOILC - optimize u_{k+1} iteratively $u_{k+1} = \arg\min_{u_{k+1}} \{J_{k+1}(u_{k+1}): e_{k+1} = r - y_{k+1}, y_{k+1} = Gu_{k+1}\}$

per selected performance index

$$J_{k+1} = \sum_{t=1}^{N} [r(t) - y_{k+1}(t)]^{T} Q(t) [r(t) - y_{k+1}(t)] + \sum_{t=0}^{N-1} [u_{k+1}(t) - u_{k}(t)]^{T} P(t) [u_{k+1}(t) - u_{k}(t)]$$

NOILC - solution

Problem stated has a solution [2]:



• Matrix gain

 $K(t) = A^T K(t+1)A + C^T Q(t+1)C - A^T K(t+1)B(B^T K(t+1)B + R(t+1))^{-1}B^T K(t+1)A$

• Predictive component

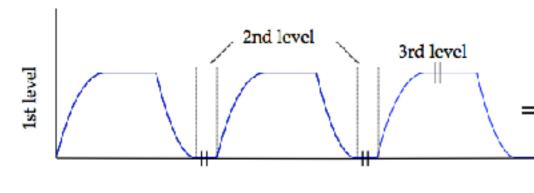
 $\xi_{k+1}(t) = (I + K(t)BR^{-1}(t)B^T)^{-1}(A^T\xi_{k+1}(t+1) + C^TQ(t)e_k(t)) \; ; \quad \xi_{k+1}(N) = 0$

Input update

 $u_{k+1}(t) = u_k(t) - (B^T K(t)B + R(t))^{-1} B^T K(t) A[x_{k+1}(t) - x_k(t)] + R^{-1}(t) B^T \xi_{k+1}(t)$

Implementation note - F-NOILC

- Extensive calculations to update input values.
- Can rearrange for precalculation of a lot of terms in advance and minimize real-time calculations
- Note need to recalculate with model changes (if any)
- See for ex. [3]



First level (before operation):

$$K(t) = A^{T}K(t+1)A + C^{T}W_{1}(t+1)C -[A^{T}K(t+1)B \cdot \{B^{T}K(t+1)B + W_{2}(t+1)\}^{-1} \cdot B^{T}K(t+1)A] ; K(N) = 0$$

$$\begin{aligned} \alpha(t) &= \{I + K(t)BW_2^{-1}(t)B^T\}^{-1} \\ \beta(t) &= \alpha(t)A^T \\ \gamma(t) &= \alpha(t)C^TW_1(t+1) \end{aligned}$$

$$\omega(t) = W_2^{-1}(t)B^T$$

$$\lambda(t) = (B^T K(t)B + W_2(t))^{-1}B^T K(t)A$$

Second level (between trials):

ŧ

$$\xi_{k+1}(t) = \beta(t)\xi_{k+1}(t+1) + \gamma(t)e_k(t+1)$$
; $\xi_{k+1}(N) = 0$

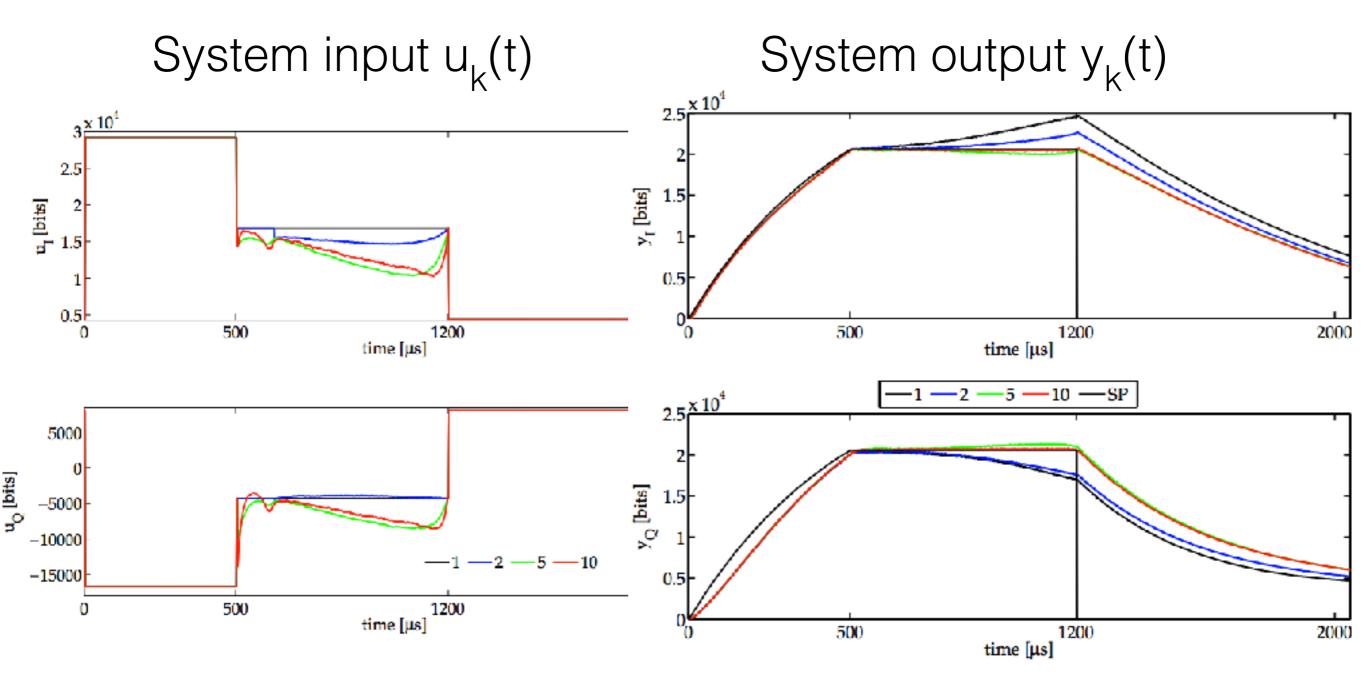
Third level (between each sample interval):

$$u_{k+1}(t) = u_k(t) - \lambda(t) \{x_{k+1}(t) - x_k(t)\} + \omega(t) \xi_{k+1}(t)$$

Out of scope - system identification

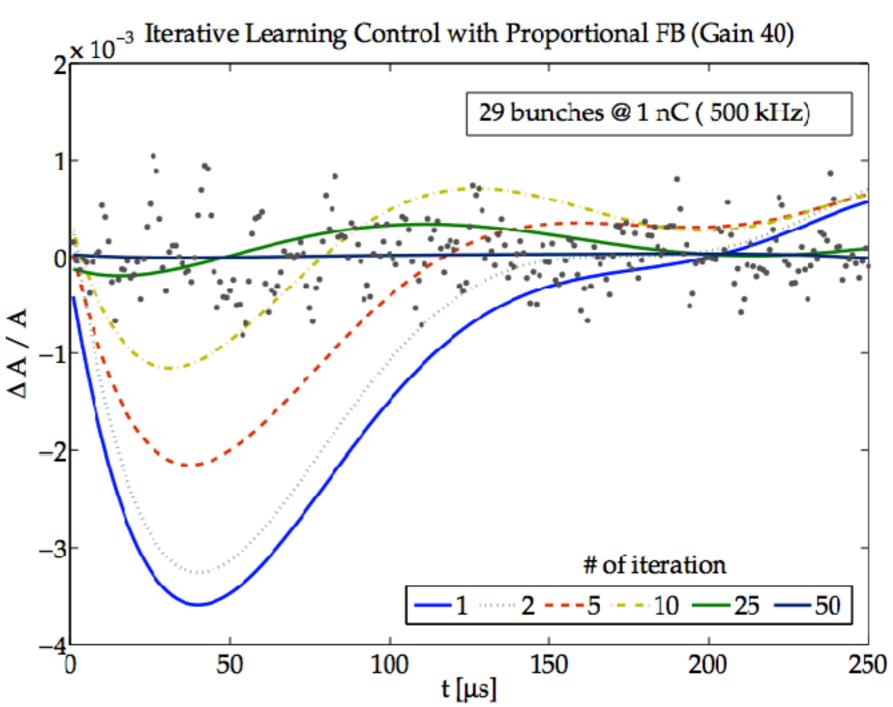
- Requires A, B, C, D...
- Black-box model for system identification
- Model validation

Experimental results open-loop ILC (no beam, LFD only)

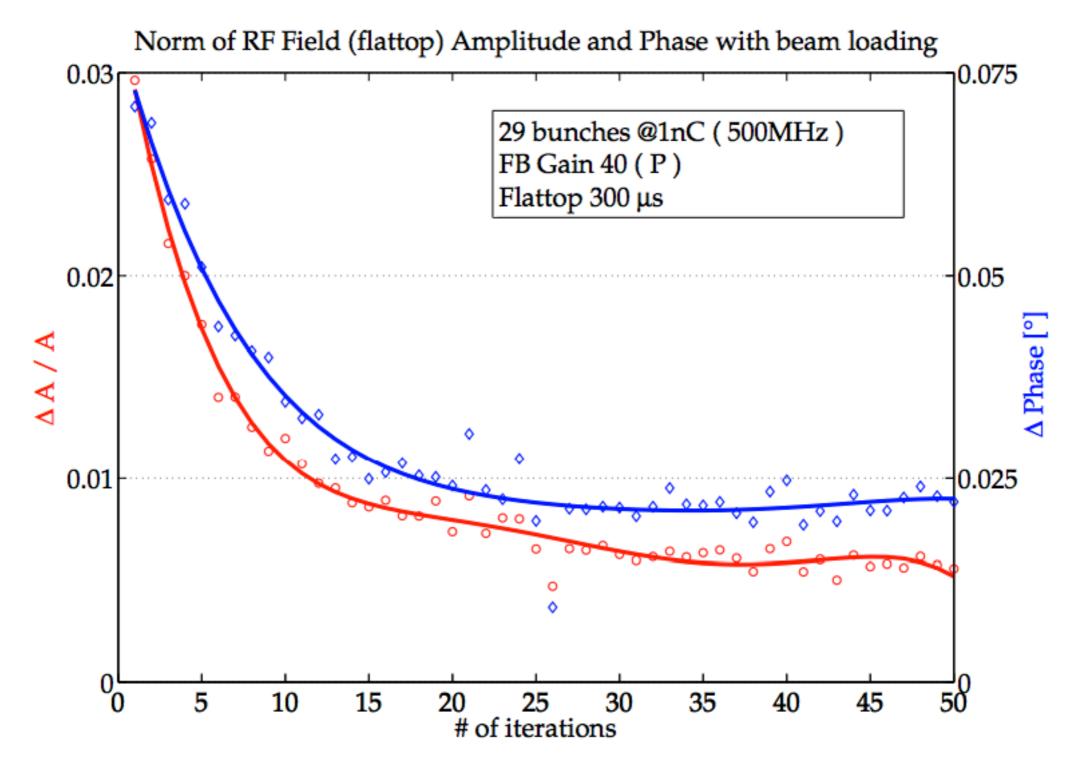


Experimental results - closed-loop ILC (P controller)

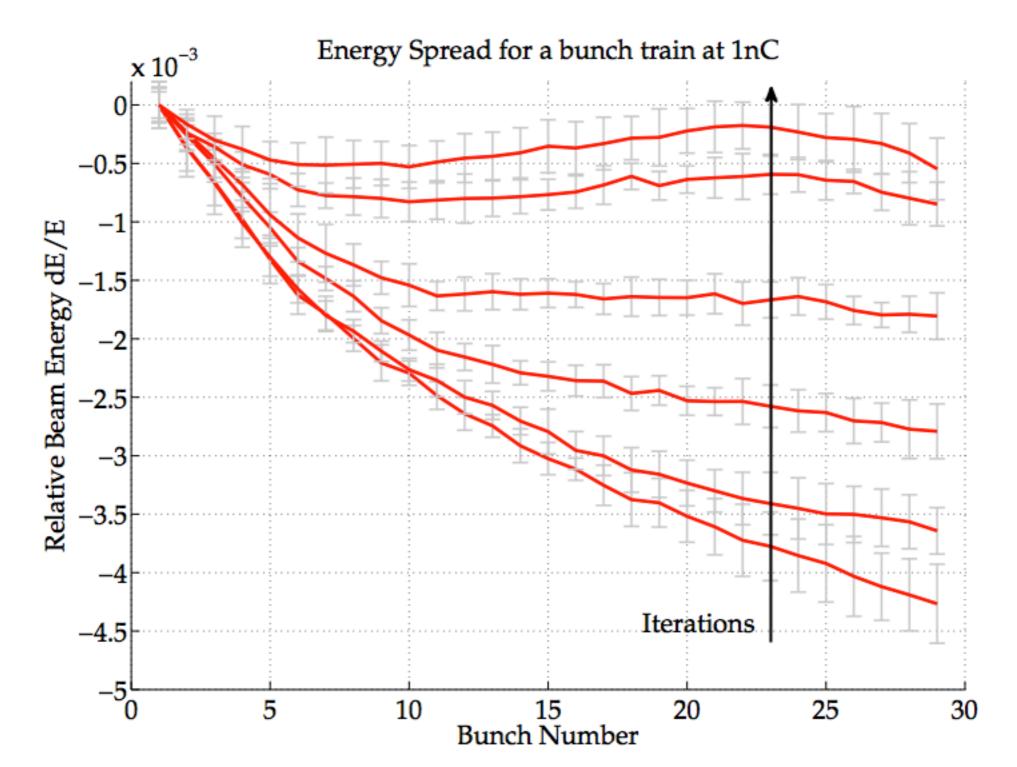
- Fitted curves of RF field amplitude changes due to feedforward adaptation
- Dots represent the measurement points after 50 iterations showing that only
 non repetitive fluctuations are left over



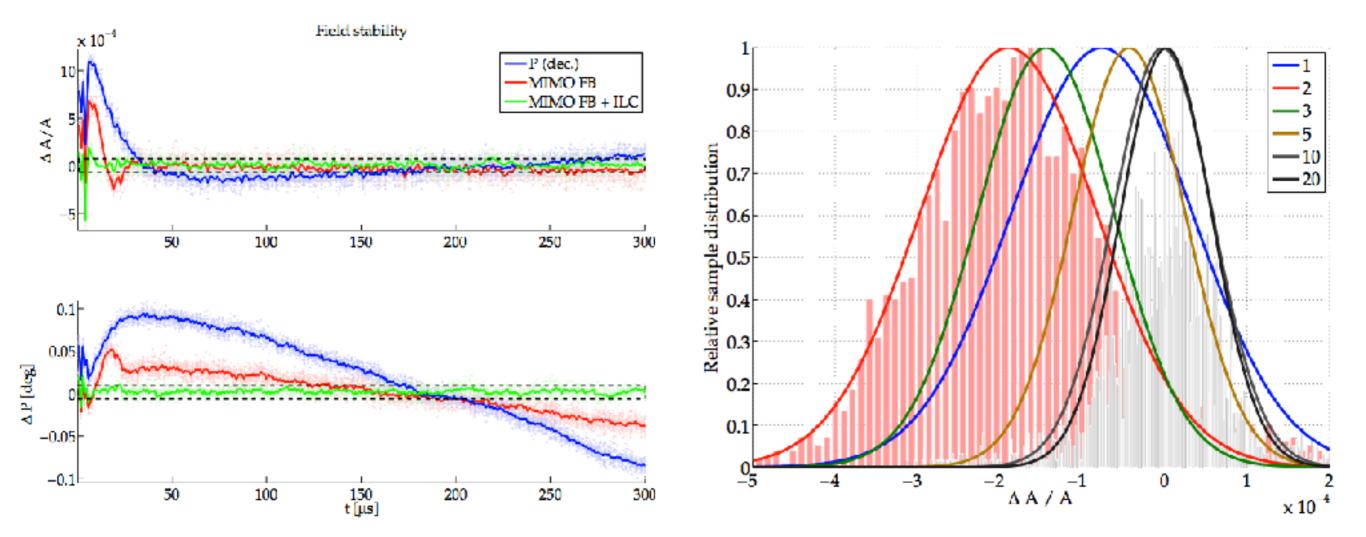
Experimental results - ILC convergence (P controller)



Experimental results - pulse train energy spread (P controller)

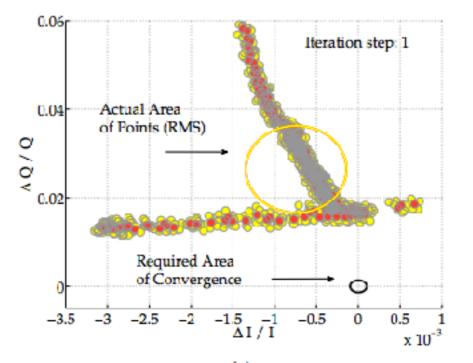


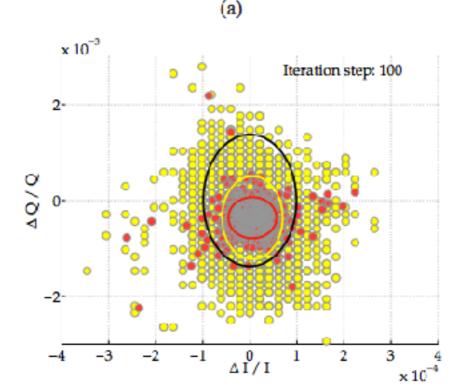
ILC and MIMO controller

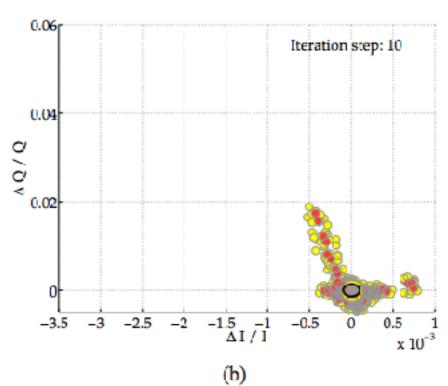


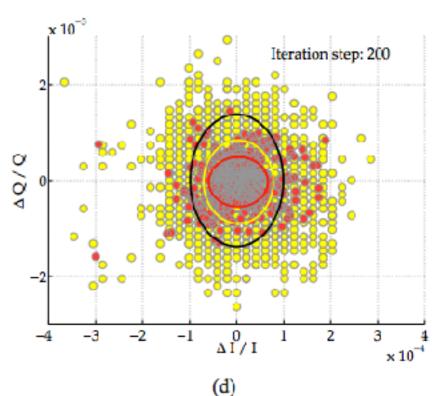
ILC long term adaptation

- I/Q domain
- yellow dot data point
- red dot 5 sample average
- yellow/red ovals rms error
- black oval system requirement
- System converges nicely.
 what happen next as iteration number increase?



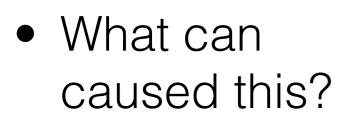


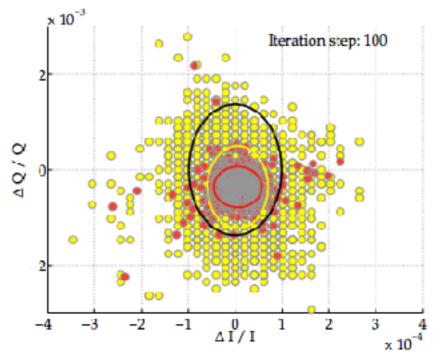


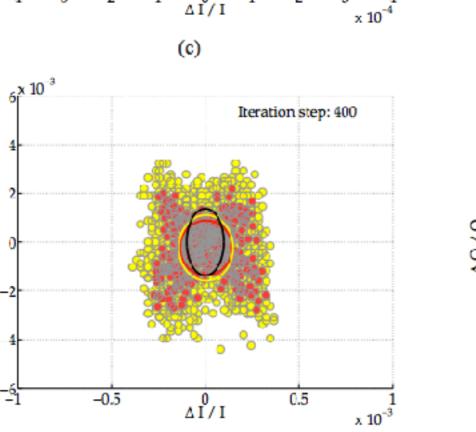


ILC long term adaptation (cont.)

 ILC induced oscillations

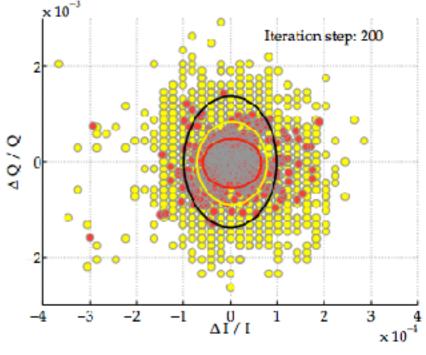




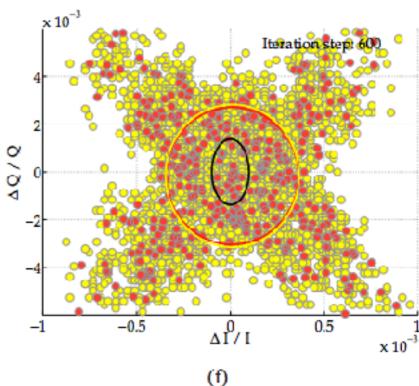


(e)

40/Q

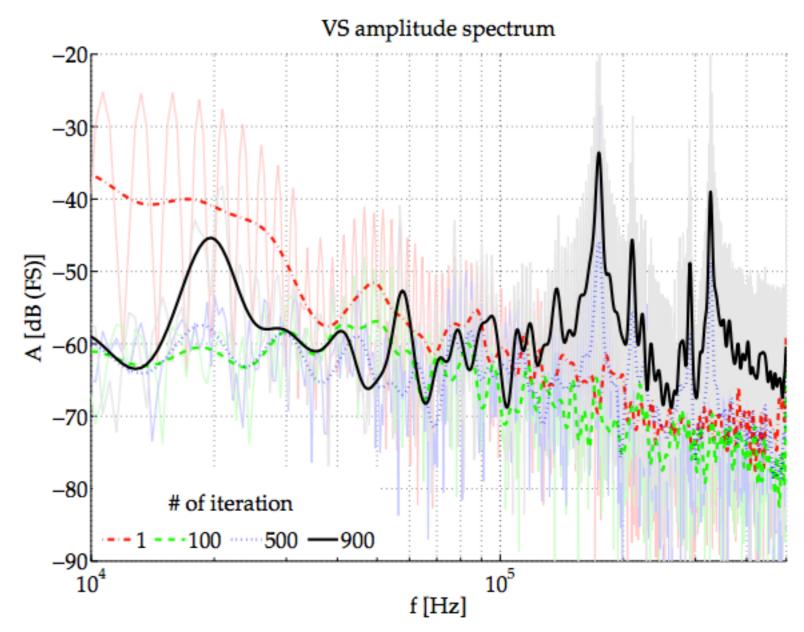


(d)



ILC - implications of model limitation

- Spectrum analysis of vector sum shows that as iterations increase, peaks occur at frequencies consistent with 8/9pi mode of the cavity
- Limitation of the system model used for ILC derivation



References

Following references were used in this presentation for strictly educational purpose:

[1] C. Schmidt (2010): *RF System Modeling and Controller Design for the European XFEL* (Doctoral thesis)

[2] N. Amann, D.H. Owens, E. Rogers: *Iterative learning control for discrete-time systems with exponential rate of convergence*, IEE Proc. Control Theory Appl., vol. 143, no. 2, pp. 217224, 1996.

[3] J.D. Ratcliffe, P.L. Lewin, E. Rogers, J.J. Htnen, D.H. Owens: Norm-Optimal Iterative Learning Control Applied to Gantry Robots for Automation Applications, IEEE Transactions on Robotics, Vol. 22,No. 6, 2006